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ABSTRACT. In this paper, we give two methods to construct large sets of disjoint compat-
ible packings (LMP (1vC4)) on 6k + 5 points. As a result, we prove that there exists an
LMP (1vC4) for v = 7iuj where i ≥ 0, j ≥ 1 and u ∈ {13, 19, 25, 31, 43, 67, 139,
163, 211, 283, 307, 331, 379}.

1. Introduction

Let X be a set of v points. A (2, 3)-packing on X is a pair (X,A), where A is a set of
3-subsets (called triples) of X , such that every 2-subset of X appears in at most one triple.
The edge-leave of a (2, 3)-packing (X,A) is a graph (X,E), where E consists of all the
pairs which do not appear in any triple of A.

A (2, 3)-packing (X,A) is said to be degenerate if there exist points that occur in no
triple of A. A degenerate (2, 3)-packing on v points is actually a (2, 3)-packing on v′

points for some v′ < v. Throughout this paper we restrict our attention to non-degenerate
(2, 3)-packings.

Two (2, 3)-packings (X,A) and (X,B) are called disjoint if A


B = φ. Two (2, 3)-
packings are called compatible if they have the same edge-leave. A set of more than two
(2, 3)-packings is called disjoint (compatible, respectively) if each pair of them is disjoint
(compatible, respectively).

A (2, 3)-packing (X,A) is called maximum if there does not exist any (2, 3)-packing
(X,B) with |A| < |B|. A maximum (2, 3)-packing with edge-leave (X,E) is denoted
by (2, 3)-MP (E) in this paper. We usually denote (2, 3)-MP (E) briefly by MP (E).
When the edge-leave (X,E) is a graph without any edge, i.e. v isolated vertices, MP (E)
is denoted by MP (1v). Similarly, an MP (1v−4C4) denotes an maximum (2, 3)-packing
with edge-leave of v−4 isolated vertices and a cycle of length four. An MP (1v) is actually
a Steiner triple system of order v. It is well known that an MP (1v) exists if and only if
v ≡ 1, 3 (mod 6). When v ≡ 5 (mod 6), an MP (1v−4C4) exists in [16, 17].

Denote by M(v) the maximum number of disjoint compatible packings on v points. De-
termination of the number M(v) is related to the construction of perfect threshold schemes
(see, for example, [7, 15]). The upper bound on M(v) is proved in [15].
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Theorem 1.1. ([15]) M(v) ≤ v − 2 for v ≡ 1, 3 (mod 6); M(v) ≤ v − 4 for v ≡ 0, 2, 5
(mod 6); and M(v) ≤ v − 6 for v ≡ 4 (mod 6). Further, except when v ≡ 4 (mod 6),
the upper bound is attained only if the packings are maximum.

Values of v for which M(v) meets the upper bound are summarized as follows.

Lemma 1.2. (1) For v ≡ 1, 3 (mod 6) and v ̸= 7, M(v) = v − 2. Also M(7) = 3
([13, 14, 18]).

(2) For v ≡ 0, 2 (mod 6), M(v) = v − 4 ([8, 5, 12]).
(3) For (v − 4)/2 ̸∈ {12, 36, 48, 144} ∪ {n > 0 : n = 6m,m ≡ 1, 5 (mod 6)},

M(v) = v − 6 ([2, 3, 4]).
(4) For v ∈ {7kt+ 4 : k ≥ 0, t = 1, 7, 13, 19, 25, 31, 43, 67} ∪ {11, 17, 23}, M(v) =

v − 4 ([6, 7, 15]).

In the literature, there are several methods in constructing sets of disjoint packings
which are not required to be compatible in [9, 10]. Such structures have applications to the
construction of constant-weight codes [1].

For v ≡ 5 (mod 6), there exists an MP (1v−4C4). If there exists a set of v − 4 dis-
joint compatible MP (1v−4C4), then M(v) = v − 4. A set of v − 4 disjoint compatible
MP (1v−4C4) is thus called a large set and denoted by LMP (1v−4C4).

Suppose that v ≡ 1 (mod 6). Let Iv = {1, 2, · · · , v} and X = Iv∪{∞1,∞2,∞3,∞4}.
An ∗LMP (1vC4) is an LMP (1vC4) = {(X,Bi) : i ∈ Iv} which satisfies the following
conditions:

(1) Each (X,Bi), i ∈ Iv , has the edge-leave (∞1 ∞2 ∞3 ∞4).
(2) {∞1,∞3, i}, {∞2,∞4, i} ∈ Bi for any i ∈ Iv .
We summarize the known results on ∗LMP (1vC4) as follows.

Lemma 1.3. There exists an ∗LMP (1vC4) for v ∈ {7, 13, 19, 25, 31, 43, 67}.

2. A direct way to construct ∗LMP(1qC4) with prime power q ≡ 1 (mod 6)

Let GF (q) be a finite field with q elements where q ≡ 1 (mod 6). Let GF (q)∗ =
GF (q) \ {0}. Let α be an element in GF (q). An α-partition of GF (q) is a partition
GF (q)∗ = Y ∪ Z such that

(a) x is never in the same class as αx, and
(b) x is never in the same class as −x.

Lemma 2.1. Let GF (q) be a finite field and t be the multiplicative order of α in GF (q)∗.
Then GF (q) has an α-partition if and only if t ≡ 2 (mod 4).

Proof Suppose that GF (q) has an α-partition GF (q)∗ = Y ∪Z. Without loss of general-
ity, let 1 ∈ Y . By condition (a) of α-partition, we have α1 ∈ Z, α2 ∈ Y , · · · , α2i−1 ∈ Z,
α2i ∈ Y , · · · .

Since αt = 1 ∈ Y , it implies that t is even. Let t = 2s. Note that αs = −1. By
condition (b) of α-partition, αs ∈ Z, which implies that s is odd. Thus, t ≡ 2 (mod 4).

If t ≡ 2 (mod 4), let ⟨α⟩ be the multiplicative sub-group of GF (q)∗ generated by α,
and let h0, h1, · · · , h q−1

t −1 be all the representative elements of coset classes. Define

Y = {hjα
2i : i = 0, 1, · · · , t/2− 1; j = 0, 1, · · · , (q − 1)/t− 1};
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Z = {hjα
2i+1 : i = 0, 1, · · · , t/2− 1; j = 0, 1, · · · , (q − 1)/t− 1}.

It is readily checked that GF (q)∗ = Y ∪ Z is an α-partition of GF (q). ✷

Let g be a primitive root of GF (q). Define logg β = a if ga = β. We usually write
logg β = a as log β = a. In this section, we always denote n = q − 1. For any unordered
pair {λ, µ} ⊆ Zn \ {0, n/2} and λ ̸= µ, define a set ∆{λ, µ} as follows:

∆{λ, µ} =


± log

gλ − 1

gµ − 1
, ± log

gλ − 1

gλ − gµ
, ± log

gµ − 1

gµ − gλ


.

It is easy to see that ∆{λ, µ} = ∆{µ, λ} and 0 ̸∈ ∆{λ, µ}. Let {λj , µj} ⊆ Zn \{0, n/2},
j = 1, 2, · · · , n

6 − 1, denote the n
6 − 1 unordered pairs which satisfy the following condi-

tions:
Con 1. All elements ±λj ,±µj ,±(λj − µj), j = 1, 2, · · · , n

6 − 1, are distinct. Let x
and y be in Zn such that

±λj ,±µj ,±(λj − µj) : j = 1, 2, · · · , n
6
− 1} = Zn \ {0, n

2
,±x,±y


.

Con 2. n/ gcd(n, x) ≡ n/ gcd(n, y) ≡ 2 (mod 4).
Con 3. The six element in each ∆{λj , µj} are distinct and different from 0, n/2 for any

j = 1, 2, · · · , n/6−1; Any two ∆{λj , µj},∆{λk, µk} are disjoint for j ̸= k ∈ [1, n
6 −1].

Theorem 2.2. Let q be a prime power and q ≡ 1 (mod 6). If {λj , µj} ⊆ Zn \ {0, n/2},
j = 1, 2, · · · , n

6 − 1 satisfy Con 1-3, then there is an ∗LMP (1qC4).

Construction: Let X = GF (q) ∪ {∞1,∞2,∞3,∞4}. By the assumption of Con 2,
the order of gx and gy in GF (q)∗ is n/ gcd(n, x) ≡ 2 (mod 4) and n/ gcd(n, y) ≡ 2
(mod 4), respectively. By Lemma 2.1, there exist a gx-partition GF (q)∗ = Y1 ∪ Z1 and
a gy-partition GF (q)∗ = Y2 ∪ Z2. We will construct q MP (1qC4) (X,Bi) (i ∈ GF (q))
with the same edge-leave of 4-cycle (∞1 ∞2 ∞3 ∞4) where Bi = B0 + i and B0 consists
of the following triples:

Part 1. {∞1,∞3, 0}, {∞2,∞4, 0};
Part 2. {∞1, z, g

xz} where z ∈ Y1, {∞2, z, g
xz} where z ∈ Z1, {∞3, z, g

yz} where
z ∈ Y2, {∞4, z, g

yz} where z ∈ Z2;
Part 3. {0, gk,−gk} for k = 0, 1, · · · , n/2− 1;
Part 4. {gk, gk+λj , gk+µj} for k ∈ Zn and j = 1, 2, · · · , n/6− 1.

Proof By Con 1 and Con 2, it is easy to check that each (X,Bi) is an MP (1qC4) with
edge leave C4 = (∞1 ∞2 ∞3 ∞4) for i ∈ GF (q). Next we should prove that Bi and Bj

are disjoint for i ̸= j. It is enough to show that if T ∈ B0 ∩ Bi then i = 0. We consider
four cases below.

Case 1. T = {∞1,∞3, 0}, or {∞2,∞4, 0}. It is easy to see that i = 0.
Case 2. T = {∞1, z, g

xz} where z ∈ Y1. Then there exists z′ ∈ Y1 such that T =
{∞1, z

′ + i, gxz′ + i} ∈ Bi, which implies that {z, gxz} = {z′ + i, gxz′ + i}. So,
±(gxz − z) = (gxz′ + i)− (z′ + i) and hence z = ±z′ since gx ̸= 1. By z, z′ ∈ Y1 and
Y1 ∪ Z1 is a gx-partition of GF (q), then z ̸= −z′. Hence z = z′ which is actually i = 0.
The proof is similar for the cases T = {∞2, z, g

xz} where z ∈ Z1, or T = {∞3, z, g
yz}

where z ∈ Y2, or T = {∞4, z, g
yz} where z ∈ Z2.
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Case 3. T = {0, gk,−gk} where k = 0, 1, · · · , n/2 − 1. Then there exists k′ ∈
{0, 1, · · · , n/2 − 1} such that T = {i, gk′

+ i,−gk
′
+ i}, or T = {gk′

+ i, gk
′+λj +

i, gk
′+µj + i} where j ∈ {1, 2, · · · , n

6 −1}. If T = {gk′
+ i, gk

′+λj + i, gk
′+µj + i} where

j ∈ {1, 2, · · · , n
6 − 1}. Without loss of generality we can assume that gk

′
+ i = 0, then

i = −gk
′
. So, we have (gk

′+λj + i)/(gk
′+µj + i) = gk/(−gk) = −1, which implies that

log[(gλj − 1)/(gµj − 1)] = n/2. Hence, n/2 ∈ ∆{λj , µj} which is impossible by Con 3.
Hence we must have T = {i, gk′

+ i,−gk
′
+ i}, summing the elements in both sides

gives 3i = 0 and so i = 0.
Case 4. T = {gk, gk+λ, gk+µ} where k ∈ Zn and {λ, µ} is a pair among {{λj , µj} :

j = 1, 2, · · · , n
6 − 1}. Then there exist k′ ∈ Zn and a pair {a, b} belonging to {{λj , µj} :

j = 1, 2, · · · , n
6 − 1} which satisfy that

{gk, gk+λ, gk+µ} = {gk
′
+ i, gk

′+a + i, gk
′+b + i}. (2.1)

Without loss of generality we can assume that gk = gk
′
+ i. Then the second and third

elements minus the first one in both-sides of (2.1) gives {gk(gλ − 1), gk(gµ − 1)} =

{gk′
(ga − 1), gk

′
(gb − 1)}. So, log[(gλ − 1)/(gµ − 1)] = ± log[(ga − 1)/(gb − 1)]. By

the hypothesis of Con. 3 we have {λ, µ} = {a, b} and then (2.1) becomes

{gk, gk+λ, gk+µ} = {gk
′
+ i, gk

′+λ + i, gk
′+µ + i}. (2.2)

Note that the sum of the 2nd and 3rd-elements minus 2 times of the first one should be
equal in both-sides of (2.2). Simplification gives gk(gλ + gµ − 2) = gk

′
(gλ + gµ − 2).

Since log[(gλ − 1)/(gµ − 1)] ̸= n/2, we can deduce that gλ + gµ − 2 ̸= 0. So, gk = gk
′
.

Summing the 3 elements in both-sides of (2.2) gives 3i = 0 and hence i = 0.
Therefore, {(X,Bi : i ∈ GF (q)} forms an ∗LMP (1qC4). This completes the proof.

✷

Lemma 2.3. There exists an ∗LMP (1qC4) for q = 139, 163, 211, 283, 307, 331, 379.

Proof Let g be a primitive root in GF (q). For each value of q, with the aid of computer,
we found n/6− 1 pairs {λj , µj}, j = 1, 2, · · · , n/6− 1, and x, y for which Con 1-3 hold.
By Theorem 2.2, there exists an ∗LMP (1qC4).

q = 139: g = 2, x = 1, y = 67, {λj , µj} for j = 1, 2, · · · , 22 are
{2, 5} {4, 10} {7, 16} {8, 19} {12, 25}

{14, 29} {17, 35} {20, 41} {22, 62} {23, 72}
{24, 83} {26, 90} {27, 87} {28, 73} {30, 91}
{31, 84} {32, 88} {33, 101} {34, 80} {36, 75}
{38, 81} {42, 86}

q = 163: g = 2, x = 1, y = 3, {λj , µj} for j = 1, 2, · · · , 26 are
{19, 40} {22, 46} {23, 49} {27, 55} {29, 59}
{32, 65} {35, 71} {37, 75} {39, 80} {42, 89}
{43, 88} {44, 100} {48, 111} {14, 25} {15, 76}
{16, 34} {17, 85} {20, 92} {31, 95} {50, 104}
{52, 57} {53, 155} {66, 150} {69, 79} {149, 158}
{154, 156}
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q = 211: g = 2, x = 1, y = 9, {λj , µj} for j = 1, 2, · · · , 34 are

{22, 45} {24, 50} {27, 55} {29, 61} {31, 64}
{34, 69} {37, 77} {38, 79} {42, 86} {43, 89}
{47, 96} {48, 110} {51, 122} {52, 126} {53, 111}
{54, 129} {56, 132} {57, 127} {59, 144} {60, 203}
{21, 115} {25, 36} {30, 147} {39, 119} {65, 73}
{68, 206} {82, 190} {87, 97} {90, 104} {92, 193}
{98, 205} {191, 204} {192, 208} {195, 198}

q = 283: g = 3, x = 1, y = 11, {λj , µj} for j = 1, 2, · · · , 46 are

{24, 50} {27, 56} {28, 59} {32, 65} {34, 70}
{37, 75} {39, 80} {42, 85} {44, 90} {47, 96}
{48, 99} {52, 105} {54, 109} {57, 115} {60, 123}
{61, 125} {62, 129} {66, 134} {69, 143} {71, 171}
{72, 179} {73, 164} {76, 174} {77, 198} {78, 172}
{79, 180} {81, 169} {82, 196} {83, 178} {87, 193}
{92, 252} {35, 277} {45, 189} {97, 267} {116, 261}
{117, 280} {120, 132} {124, 131} {126, 142} {127, 136}
{128, 147} {130, 133} {257, 274} {259, 269} {260, 278}
{262, 268}

q = 307: g = 5, x = 1, y = 5, {λj , µj} for j = 1, 2, · · · , 50 are

{24, 50} {27, 56} {28, 60} {31, 67} {33, 70}
{34, 72} {39, 81} {41, 84} {44, 92} {46, 99}
{47, 98} {49, 101} {54, 112} {55, 118} {57, 116}
{61, 125} {62, 127} {66, 143} {68, 137} {71, 145}
{73, 148} {76, 154} {79, 172} {80, 186} {82, 176}
{83, 197} {85, 206} {86, 201} {87, 204} {88, 196}
{89, 184} {90, 187} {91, 261} {35, 138} {40, 195}
{96, 276} {104, 113} {107, 128} {123, 141} {124, 283}
{129, 146} {131, 302} {132, 296} {133, 300} {140, 284}
{149, 299} {281, 295} {286, 298} {287, 290} {291, 293}

q = 331: g = 3, x = 1, y = 7, {λj , µj} for j = 1, 2, · · · , 54 are

{23, 49} {27, 55} {29, 62} {31, 63} {34, 70}
{37, 75} {39, 79} {42, 86} {43, 90} {46, 94}
{50, 101} {52, 106} {53, 111} {56, 113} {59, 123}
{60, 121} {65, 131} {67, 139} {68, 137} {71, 145}
{73, 150} {76, 154} {80, 162} {81, 164} {84, 171}
{85, 183} {88, 184} {89, 194} {91, 206} {92, 218}
{93, 212} {95, 223} {97, 201} {99, 221} {100, 216}
{102, 210} {103, 285} {41, 158} {110, 130} {125, 140}
{127, 314} {132, 135} {133, 306} {134, 138} {141, 316}
{142, 320} {144, 149} {151, 160} {153, 309} {161, 163}
{295, 308} {300, 311} {305, 322} {312, 318}

q = 379: g = 2, x = 1, y = 9, {λj , µj} for j = 1, 2, · · · , 62 are
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{24, 50} {27, 55} {29, 60} {32, 66} {33, 68}
{37, 75} {40, 81} {42, 86} {43, 89} {47, 95}
{49, 100} {52, 105} {54, 110} {57, 116} {58, 119}
{62, 127} {63, 130} {64, 136} {69, 139} {71, 147}
{73, 151} {74, 154} {77, 160} {79, 161} {84, 169}
{87, 175} {90, 181} {92, 188} {93, 191} {94, 208}
{97, 199} {99, 207} {101, 223} {103, 234} {104, 238}
{106, 241} {107, 253} {109, 237} {111, 240} {112, 255}
{113, 230} {115, 260} {120, 252} {121, 245} {45, 201}
{142, 159} {149, 172} {150, 371} {152, 366} {153, 192}
{158, 374} {163, 173} {165, 195} {166, 360} {167, 365}
{168, 204} {176, 196} {178, 193} {353, 375} {357, 376}
{362, 367} {364, 372}

✷

Combining Lemma 1.3 and Lemma 2.3 we have the the following results.

Theorem 2.4. There exists an ∗LMP (1vC4) for v ∈ {7, 13, 19, 25, 31, 43, 67, 139, 163,
211, 283, 307, 331, 379}.

3. A Construction of ∗LMP(1vC4) via 3-designs

A 3-wise balanced design is a pair (X,B), where X is a finite set and B is a set of
subsets of X , called blocks with the property that every 3-subset of X is contained in a
unique block. If |X| = v and K is the set of block sizes, we denote it by S(3,K, v). Let
(X ∪ {∞},B) be an S(3,K0 ∪K1, v + 1) where |X| = v. (X ∪ {∞},B) is denoted by
S(3,K0,K1, v + 1) if |B| ∈ K0 for any ∞ ̸∈ B ∈ B; and |B| ∈ K1 for any ∞ ∈ B ∈ B.

An S(3, {k}, v) is denoted by S(3, k, v). An S(3, 4, v) is usually called a Steiner
quadruple system of order v. The following results can be found in [11].

Lemma 3.1. (1) There exists an S(3, q+1, qn+1) for any prime power q and any integer
n ≥ 2.

(2) There exists an S(3, 4, v) if and only if v ≡ 2, 4 (mod 6).

Theorem 3.2. If there exists an S(3,K0,K1, v + 1) and there exists an ∗LMP (1k−1C4)
for any k ∈ K1, and k ≡ 2, 4 (mod 6) for any k ∈ K0, then there exists an ∗LMP (1vC4).

Construction: Let (X

{∞1},B) be an S(3,K0,K1, v + 1). We will construct an

∗LMP (1vC4) on X ∪ {∞1,∞2,∞3,∞4} by the following two steps.
Step 1. For any B ∈ B, ∞1 ∈ B (i.e., |B| ∈ K1), by the hypothesis, there exists an

∗LMP (1|B|−1C4) = {(B ∪ {∞2,∞3,∞4},AB(x)) : x ∈ B \ {∞1}}
such that each AB(x) have edge-leave (∞1 ∞2 ∞3 ∞4) and {∞1,∞3, x}, {∞2,∞4,
x} ∈ AB(x) for x ∈ B \ {∞1}.

Step 2. For any B ∈ B, ∞1 ̸∈ B (i.e., |B| ∈ K0), there exists an S(3, 4, |B|) (B,AB)
by (2) of Lemma 3.1. Let AB(x) = {C \ {x} : x ∈ C ∈ AB}.

For any x ∈ X , define
Bx =


x∈B∈B

AB(x).
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Then it is readily checked that the collection {(X

{∞1,∞2,∞3,∞4},Bx) : x ∈ X} is

an ∗LMP (1vC4). ✷

Corollary 3.3. There exists an ∗LMP (1vC4) for v = uj where j ≥ 1 and u ∈ {7, 13, 19,
25, 31, 43, 67, 139, 163, 211, 283, 307, 331, 379}.

Proof It follows immediately from Lemma 3.1 and Theorem 3.2. ✷

4. A direct product construction

In this section, we will give a direct product construction, which is actually a general-
ization of Theorem 3.1 of [6]. Firstly, we introduce some definitions.

Assume that v ≡ 1 (mod 6). Let Iv = {1, 2, · · · , v} and X = Iv

{∞1,∞2,∞3,∞4}.

Let {(X,Bi) : i ∈ Iv} be an LMP (1vC4). The triple-leave of the LMP (1vC4) is the
set of


Iv
3


\ (


i∈Iv

Bi) and denoted by LT (v). A simple counting shows that |LT (v)| =

v(v − 1)/3.
Let ∗LMP (1vC4) = {(Iv


{∞1,∞2,∞3,∞4},Bi) : i ∈ Iv} with {∞1,∞3, i},

{∞2, ∞4, i} ∈ Bi and each Bi have the edge-leave C4 = (∞1 ∞2 ∞3 ∞4) and triple-
leave LT (v). Let Ei = {{a, b} : a, b ∈ Iv, {∞l, a, b} ∈ Bi, l = 1, 2, 3, 4}. A partitioned
∗LMP (1vC4) is an ∗LMP (1vC4) if the following conditions hold:

(1) Ei can be partitioned into E1
i , E2

i , such that (Iv \ {i}, E1
i ) and (Iv \ {i}, E2

i ) are all
2-regular graphs for i ∈ Iv .

(2) Given a direction for each cycle of E1
i , we obtain a directed graph Ē1

i , such that
i∈Iv

Ē1
i = DKv (DKv is the complete digraph of order v) (i.e., for any ordered pair (a, b)

a ̸= b ∈ Iv , there is a unique i such that (a, b) ∈ Ē1
i ).

(3) There exists a partition {P1, P2, · · · , Pv} of the triple-leave LT (v), such that |Pi| =
|Pj |, i ̸= j ∈ Iv , and Pi cover E2

i (i.e., for any {a, b} ∈ E2
i , there exists one block B ∈ Pi

such that {a, b} ⊂ B. Note: |Pi| = v−1
3 and |E2

i | = v − 1).

Lemma 4.1. [6] There exists a partitioned ∗LMP (17C4).

Theorem 4.2. If there exist both a partitioned ∗LMP (1vC4) and an LMP (1uC4) (or a
∗LMP (1uC4)), then there exists an LMP (1uvC4) (or a ∗LMP (1uvC4)).

Construction: Let {(Iv

{∞1,∞2,∞3,∞4},Bi) : i ∈ Iv} be a partitioned ∗LMP

(1vC4). The symbols E1
i , E2

i , Pi, i ∈ Iv , are the same as in the definition. And let
LMP (1uC4) = {(Zu


{∞1,∞2,∞3,∞4},Aj) : j ∈ Zu}. We will construct uv

MP (1uvC4)s (X, Cij), i ∈ Iv , j ∈ Zu on X = (Zu × Iv)

{∞1,∞2,∞3,∞4} where

Cij consists of the following triples:
Part 1. {(x, i), (y, i), (z, i)}, where {x, y, z} ∈ Aj and (∞l, i) = ∞l, l = 1, 2, 3, 4.
Part 2. {(x, k1), (y, k2), (z, k3)}, where {k1, k2, k3} ∈ Bi, k1 < k2 < k3, k1, k2, k3 ∈

Iv , x+ y + z = j (mod u).
Part 3. {(x, k1), (y, k1), (x+y

2 + j, k2)}, where (k1, k2) ∈ Ē1
i , x ̸= y ∈ Zu, x < y.

Part 4. {(x, k1), (x− y, k2), (x+ y + j, k3)}, where {k1, k2, k3} ∈ Pi, k1 < k2 < k3,
x ∈ Zu, y ∈ Zu \ {j}.

Part 5. {(x, k1), (x+ j, k2),∞l}, where (k1, k2) ∈ Ē1
i and {k1, k2,∞l} ∈ Bi, x ∈ Zu.
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Part 6. {(x1, k1), (x2, k2),∞l}, where {k1, k2} ∈ E2
i , k1 < k2 and {k1, k2,∞l} ∈ Bi.

Let {k1, k2, k3} ∈ Pi, then
x1 = x, x2 = x− j if k1 < k2 < k3, x ∈ Zu;
x1 = x, x2 = x+ 2j if k1 < k3 < k2, x ∈ Zu;
x1 = x− j, x2 = x+ 2j if k3 < k1 < k2, x ∈ Zu.

Proof (1) Each (X, Cij), i ∈ Iv, j ∈ Zu, is an MP (1uvC4).
In fact, there are exactly

u2+7u+4
6 + u2(v−1)(v−4)

6 + u(u−1)(v−1)
2 + u(u−1)(v−1)

3 + 2u(v − 1)

= u2v2+7uv+4
6

blocks in each Cij (i ∈ Iv , j ∈ Zu). Thus, we only need to show that any 2-subset
P ∈ (X ×X) \ C4 is contained in a block of Cij . All the possibilities of P are exhausted
as follows:

(a). P = {∞1,∞3} or {∞2,∞4}, then P is contained in one block of Part 1 of Cij .
(b). P = {(x, h),∞l}, x ∈ Zu, h ∈ Iv . If h = i, since pair {x,∞l} is contained in

exactly one block B of Aj , P is contained in one block of Part 1 of Cij . If h ̸= i, there is
an s ∈ Iv such that {h, s,∞l} ∈ Bi. When {h, s} ∈ E1

i , P is contained in one block of
Part 5 of Cij . When {h, s} ∈ E2

i , P is contained in one block of Part 6 of Cij .
(c). P = {(x, h), (y, h)}, x ̸= y ∈ Zu, h ∈ Iv . If h = i, then P is contained in one

block of Part 1 of Cij . If h ̸= i, then P is contained in one block of Part 3 of Cij .
(d). P = {(x, h), (y, s)}, x, y ∈ Zu, h ̸= s ∈ Iv . There is a t ∈ Iv∪{∞1,∞2,∞3,∞}

such that {h, s, t} ∈ Bi. If t ∈ Iv , then P is contained in one block of Part 2 of Cij . If
t = ∞l, then when {h, s} ∈ E1

i , P is contained in one block of Part 3 or Part 5; when
{h, s} ∈ E2

i , P is contained in one block of Part 4 or Part 6 of Cij .
Thus, each (X, Cij), i ∈ Iv, j ∈ Zu, is an MP (1uvC4).
(2). For any (i, j) ̸= (s, t), i, s ∈ Iv , j, t ∈ Zu, Cij and Cst are disjoint.
(a). i ̸= s. Since Bi ∩Bs = φ, En

i ∩En
s = φ, (n = 1, 2), Pi ∩Ps = φ, and (Pi ∪Ps)∩

(Bi ∪ Bs) = φ, we have Cij ∩ Cst = φ.
(b). If i = s, then j ̸= t. Note that Aj


At = φ, Pi


Bi = φ,

{{x, y, z} : x+ y+ z = j, x, y, z ∈ Zu}∩{{x, y, z} : x+ y+ z = t, x, y, z ∈ Zu} = φ,

and

{(x, x−y, x+y+j) : x∈Zu, y∈Zu\{j}}∩{(x, x−y, x+y+t) : x∈Zu, y∈Zu\{t}} = φ.

It is not difficult to check that Cij

Cst = φ.

Remark: If LMP (1uC4) = {(Zu


{∞1,∞2,∞3,∞4},Aj) : j ∈ Zu} is an ∗LMP

(1uC4), i.e. the blocks {∞1,∞3, j}, {∞2,∞4, j} ∈ Aj . Then by the construction of
Theorem 4.2, we have the blocks {∞1,∞3, (i, j)}, {∞2,∞4, (i, j)} ∈ Cij . Thus we get
an ∗LMP (1uvC4). ✷

5. Conclusion

Combining Corollary 2.4, Corollary 3.3, Lemma 4.1 and Theorem 4.2, we obtain the
following results:
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Theorem 5.1. There exists an LMP (1vC4) for v = 7iuj where i ≥ 0, j ≥ 0 and u ∈
{13, 19, 25, 31, 43, 67, 139, 163, 211, 283, 307, 331, 379}.
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