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(Communication presented by Prof. Filippo Cammaroto)

ABSTRACT. In this paper, we give two methods to construct large sets of disjoint compat-
ible packings (LM P(1YC4)) on 6k + 5 points. As a result, we prove that there exists an
LMP(1°Cy) for v = 7*u? where i > 0,5 > 1and u € {13, 19, 25, 31, 43, 67, 139,
163,211, 283,307, 331, 379}.

1. Introduction

Let X be a set of v points. A (2, 3)-packing on X is a pair (X, .A), where A is a set of
3-subsets (called triples) of X, such that every 2-subset of X appears in at most one triple.
The edge-leave of a (2, 3)-packing (X, .A) is a graph (X, E'), where E consists of all the
pairs which do not appear in any triple of .A.

A (2, 3)-packing (X, .A) is said to be degenerate if there exist points that occur in no
triple of A. A degenerate (2, 3)-packing on v points is actually a (2, 3)-packing on v’
points for some v’ < v. Throughout this paper we restrict our attention to non-degenerate
(2, 3)-packings.

Two (2, 3)-packings (X,.A) and (X, B) are called disjoint it A(\B = ¢. Two (2, 3)-
packings are called compatible if they have the same edge-leave. A set of more than two
(2, 3)-packings is called disjoint (compatible, respectively) if each pair of them is disjoint
(compatible, respectively).

A (2,3)-packing (X, A) is called maximum if there does not exist any (2, 3)-packing
(X, B) with |A| < |B|. A maximum (2, 3)-packing with edge-leave (X, E') is denoted
by (2,3)-M P(FE) in this paper. We usually denote (2,3)-M P(FE) briefly by M P(FE).
When the edge-leave (X, F) is a graph without any edge, i.e. v isolated vertices, M P(E)
is denoted by M P(1?). Similarly, an M P(1°~*C}) denotes an maximum (2, 3)-packing
with edge-leave of v—4 isolated vertices and a cycle of length four. An M P(1?) is actually
a Steiner triple system of order v. It is well known that an M P(1") exists if and only if
v=1,3 (mod 6). Whenv =5 (mod 6), an M P(1°~*C}) exists in [16, 17].

Denote by M (v) the maximum number of disjoint compatible packings on v points. De-
termination of the number M (v) is related to the construction of perfect threshold schemes
(see, for example, [7, 15]). The upper bound on M (v) is proved in [15].
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Theorem 1.1. ([15]) M (v) <v—2forv=1,3 (mod 6); M(v) <v—4forv=0,2,5
(mod 6); and M(v) < v —6 forv =4 (mod 6). Further, except when v =4 (mod 6),
the upper bound is attained only if the packings are maximum.

Values of v for which M (v) meets the upper bound are summarized as follows.

Lemma 1.2. (1) Forv = 1,3 (mod 6) and v # 7, M(v) = v — 2. Also M(7) = 3
([13, 14, 18]).

(2) Forv=0,2 (mod 6), M(v) =v —4([8, 5, 12]).

(3) For (v —4)/2 ¢ {12,36,48,144} U {n > 0 : n = 6m,m = 1,5 (mod 6)},
M) = v — 6 (12, 3, 4]).

@) Forv e {T"t+4: k>0t =1,7,13,19,25,31,43,67} U {11, 17,23}, M(v) =
v —4 (6,7, 15]).

In the literature, there are several methods in constructing sets of disjoint packings
which are not required to be compatible in [9, 10]. Such structures have applications to the
construction of constant-weight codes [1].

For v = 5 (mod 6), there exists an M P(1V=*C}). If there exists a set of v — 4 dis-
joint compatible M P(1v=4Cy}), then M (v) = v — 4. A set of v — 4 disjoint compatible
M P(1°=%Cy) is thus called a large set and denoted by LM P(1V~4Cy).

Suppose thatv = 1 (mod 6). Let I, = {1,2,--- ,v} and X = I[,U{007, 003, 003, 004 }.
An*LMP(1"Cy)isan LM P(1VCy) = {(X, B;) : i € I,,} which satisfies the following
conditions:

(1) Each (X, B;), i € I,,, has the edge-leave (001 00y 003 004).

(2) {001, 003,14}, {002,004,1} € B; forany i € I,,.

We summarize the known results on * LM P(1VCy) as follows.

Lemma 1.3. There exists an * LM P(1°Cy) for v € {7,13,19,25,31,43,67}.

2. A direct way to construct *“LMP(19C,) with prime power q = 1 (mod 6)

Let GF(q) be a finite field with ¢ elements where ¢ = 1 (mod 6). Let GF(q)* =
GF(q) \ {0}. Let a be an element in GF(q). An «-partition of GF(q) is a partition
GF(q)* =Y U Z such that

(a) x is never in the same class as oz, and

(b) x is never in the same class as —z.

Lemma 2.1. Let GF(q) be a finite field and t be the multiplicative order of o in GF(q)*.
Then GF(q) has an a-partition if and only if t = 2 (mod 4).

Proof Suppose that GF'(g) has an a-partition GF(¢)* = Y U Z. Without loss of general-

ity, let 1 € Y. By condition (a) of a-partition, we have o' € Z, a2 €Y, ---,a? 1 € Z,
2i
ateyY, ..
Since a! = 1 € Y, it implies that ¢ is even. Let ¢ = 2s. Note that a® = —1. By

condition (b) of a-partition, a® € Z, which implies that s is odd. Thus, t = 2 (mod 4).
If t = 2 (mod 4), let (o) be the multiplicative sub-group of GF'(q)* generated by «,
and let ho, hy,--- ,ha—1_, be all the representative elements of coset classes. Define
t
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Z={hja®*:i=0,1,---,t/2—1;7=0,1,---,(¢— 1)/t — 1}.
It is readily checked that GF'(¢)* =Y U Z is an a-partition of GF'(q). a

Let g be a primitive root of GF'(q). Define log, 8 = a if g* = 3. We usually write
log, 8 = a as log f = a. In this section, we always denote n = q — 1. For any unordered
pair {\, u} C Z, \ {0,n/2} and X # p, define a set A{\, u} as follows:

A . w1
A{/\,M}:{ilogzu_ iloggg)\_g , £log 2 _gx}'

1’ 7 gH
Itis easy to see that A{\, u} = A{p, A} and 0 &€ A{\, u}. Let {\;, u;} € Z,\{0,n/2},
Jj=1,2,---,% — 1, denote the § — 1 unordered pairs which satisfy the following condi-
tions:

Con 1. All elements +X;, £15, £(Aj — pj),5 = 1,2,---, & — 1, are distinct. Let =
and y be in Z,, such that

{i/\j,iuj,i(Aj—uj): j=1,2,- ,%—1}:Zn\{0,g7j:x,ﬂ:y}.

Con 2. n/ged(n,z) = n/ged(n,y) =2 (mod 4).
Con 3. The six element in each A{\;, u;} are distinct and different from 0, /2 for any
J=1,2,---,n/6—1; Any two A{\;, ptj }, A{ g, g } are disjoint for j # k € [1, 5 —1].

Theorem 2.2. Let g be a prime power and ¢ =1 (mod 6). If {\;, u;} C Z, \ {0,n/2},
Jj=1,2,---, & — Lsatisfy Con I-3, then there is an * LM P(1Cy).

Construction: Let X = GF(q) U {001, 002,003,004}. By the assumption of Con 2,
the order of ¢g* and ¢g¥ in GF(q)* is n/ged(n,x) = 2 (mod 4) and n/ged(n,y) = 2
(mod 4), respectively. By Lemma 2.1, there exist a g®-partition GF(¢)* = Y; U Z; and
a g¥-partition GF(q)* = Y2 U Zy. We will construct ¢ M P(19Cy) (X, B;) (i € GF(q))
with the same edge-leave of 4-cycle (001 00 003 004) where B; = By + i and B consists
of the following triples:

Part 1. {001, 03, 0}, {OOQ, 004, O},

Part 2. {001, 2, g"2z} where z € Y1, {002, 2,9"2} where z € Z1, {003, 2, g¥z} where
z €Yy, {004, 2,9Yz} where z € Zy;

Part 3. {0, g%, —g*} fork =0,1,--- ,n/2 — 1;

Part 4. {gF, g"+tNi gFtHi) fork € Z,andj = 1,2,--- ,n/6 — 1.

Proof By Con 1 and Con 2, it is easy to check that each (X, B;) is an M P(1¢Cy) with
edge leave Cy = (001 002 003 004) for i € GF(gq). Next we should prove that B; and B;
are disjoint for 7 # j. It is enough to show that if 7" € By N B; then ¢ = 0. We consider
four cases below.

Case 1. T = {007, 003, 0}, or {c0g, 004, 0}. It is easy to see that i = 0.

Case 2. T = {001, 2,9"2} where z € Y;. Then there exists z’ € Y; such that T =
{o01,2" +4,9%2 + i} € B;, which implies that {z,¢g°z} = {z’ + 4,92 + i}. So,
+(g%z — 2) = (¢*2' + i) — (' +¢) and hence z = £z’ since g* # 1. By 2,2’ € Y7 and
Y1 U Z; is a g®-partition of GF(q), then z # —2'. Hence z = 2’ which is actually ¢ = 0.
The proof is similar for the cases T' = {002, 2, g* 2} where z € Z1, or T = {c03, 2,¢Y2}
where z € Y, or T = {00y, 2, g¥z} where z € Z5.
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Case 3. T = {0,¢", —g*} where k = 0,1,--- ,n/2 — 1. Then there exists k' €
{0,1,--+,n/2 — 1} such that T = {i,¢* +i,—g" +i},or T = {g* +i,g" % +
i,g" t1i +i} where j € {1,2,--+, 2 —1}. If T = {g* +4,g" % +i,g" *#i 44} where
je{1,2,---, 5 1}. Without loss of generality we can assume that gk/ + 4 = 0, then
i = —g*. So, we have (gF' T +4)/(g¥ THi + i) = g¥ /(—g¥) = —1, which implies that
log[(g* —1)/(g" —1)] = n/2. Hence, n/2 € A{)\;, u1;} which is impossible by Con 3.

Hence we must have T = {3, g +i,—g" + i}, summing the elements in both sides
gives 3¢t = 0 and so 7 = 0.

Case 4. T = {g~, gF™*, gFT+} where k € Z,, and {\, u} is a pair among {{)\;, f1;} :
j=1,2,---, & — 1}. Then there exist &’ € Z,, and a pair {a, b} belonging to {{\;, 11;}
j=1,2,---, & — 1} which satisfy that

{5, 6", g5y = {g" +i,9" T i, M TP i) 2.1)
Without loss of generality we can assume that g% = gk, + 7. Then the second and third
elements minus the first one in both-sides of (2.1) gives {g*(¢* — 1),¢*(g* — 1)} =

{g¥' (9" = 1),9" (" = 1)} So, log[(9* — 1)/(¢" — 1)] = *log[(¢* —1)/(¢" — 1)]. By
the hypothesis of Con. 3 we have {\, u} = {a, b} and then (2.1) becomes

{g*, 6", ") = {g" +i, 0" +i,g" T 44}, (2.2)
Note that the sum of the 2nd and 3rd-elements minus 2 times of the first one should be
equal in both-sides of (2.2). Simplification gives ¢*(¢* + g — 2) = ¢* (¢* + g* — 2).
Since log[(g* — 1)/(g" — 1)] # n/2, we can deduce that g* 4 g/ — 2 # 0. So, g¥ = g*'.
Summing the 3 elements in both-sides of (2.2) gives 3¢ = 0 and hence ¢ = 0.
Therefore, {(X,B; : i € GF(q)} forms an * LM P(19C}). This completes the proof.
O

Lemma 2.3. There exists an * LM P(19Cy) for ¢ = 139,163,211, 283, 307, 331, 379.

Proof Let g be a primitive root in GF'(q). For each value of ¢, with the aid of computer,
we found n/6 — 1 pairs {\;, u;}, 7 =1,2,--- ,n/6 — 1, and z, y for which Con 1-3 hold.
By Theorem 2.2, there exists an * LM P(19C}).
=139 9g=22=1,y=067,{\;,pu;}forj=1,2,--- 22 are
{2,5}  {4,10}  {7,16} {8,19} {12,25}
(14,29} {17,35}  {20,41} {22,62} {23,72}
(24,83} {26,90} {27,87} {28,73} {30,91}
(31,84} {32,88)} {33,101} {34,80} {36,75}
{38,81} {42,86}
gq=163:9g=2,2=1,y=3,{\j,u;} forj=1,2,---,26 are
{19,40} {22,46}  {23,49} {27,55} {29,59}
{32,65} {35,71}  {37,75}  {39,80} {42,89}
(43,88} {44,100} {48,111} {14,25} {15,76}
(16,34} {17,85} {20,92} {31,95} {50,104}
(52,57} {53,155} {66,150} {69,79} {149,158}
{154, 156}
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g=211:g=2,2=1y=9,{\j,u;}forj=1,2,--- 34 are
{22,45}  {24,50} {27,55} {29,61} {31, 64}
(34,60} {3777}  {38,79}  {42,86}  {43,89)
{47,96} {48,110} {51,122} {52,126} {53,111}
{54,129} {56,132} {57,127} {59,144} {60,203}
{21,115} {25, 36} {30,147} {39,119} {65,73}
{68,206} {82,190} {87,97} {90,104} {92,193}
{98,205} {191,204} {192,208} {195,198}
¢q=283g=3,z=1y=11,{\;,u;}forj=1,2,--- 46 are
{24, 50} {27,56} {28, 59} {32,65} {34, 70}
{37,75} {39, 80} {42,85} {44,90} {47,96}
(48,99} {52,105} {54,100} {57,115} {60,123}
{61,125} {62,129} {66,134} {69,143} {71,171}
{72,179} {73,164} {76,174} {77,198} {78,172}
{79,180} {81,169} {82,196} {83,178} {87,193}
{92,252} {35,277} {45,189} {97,267} {116,261}
{117,280} {120,132} {124,131} {126,142} {127,136}
{128,147} {130,133} {257,274} {259,269} {260,278}
{262, 268}
q=307:g9g=5x=1,y="5{\,p;} forj=1,2,---,50are
(24,50} {27,56}  {28,60}  {31,67}  {33,70}
{34, 72} {39, 81} {41, 84} {44,92} {46,99}
{47,98} {49,101} {54,112} {55,118} {57,116}
{61,125} {62,127} {66,143} {68,137} {71,145}
{73,148} {76,154} {79,172} {80,186} {82,176}
{83,197} {85,206} {86,201} {87,204} {88,196}
{89,184} {90,187} {91,261} {35,138} {40,195}
{96,276} {104,113} {107,128} {123,141} {124,283}
{129,146} {131,302} {132,296} {133,300} {140,284}
{149,299} {281,295} {286,298} {287,290} {291,293}
¢q=33l:g=3,z=1Ly="7{\j,pu;}forj=1,2,--- 54 are
{23, 49} {27,55} {29, 62} {31, 63} {34, 70}
{37,75} {39, 79} {42, 86} {43,90} {46, 94}
{50,101} {52,106} {53,111} {56,113} {59,123}
{60,121} {65,131} {67,139} {68,137} {71,145}
{73,150} {76,154} {80,162} {81,164} {84,171}
{85,183} {88,184} {89,194} {91,206} {92,218}
{93,212} {95,223} {97,201} {99,221} {100,216}
{102,210} {103,285} {41,158} {110,130} {125,140}
{127,314} {132,135} {133,306} {134,138} {141,316}
{142,320} {144,149} {151,160} {153,309} {161,163}
{295,308} {300,311} {305,322} {312,318}

q=31%9g=22=1y=9,{\,p;}forj=1,2,---,62are
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{24,50}  {27,55}  {29,60}  {32,66}  {33,68}
{37,75}  {40,81}  {42,86}  {43,89}  {47,95}
{49,100} {52,105} {54,110} {57,116} {58,119}
{62,127} {63,130} {64,136} {69,139} {71,147}
(73,151} {74,154} {77,160} {79,161} {84,169}
{87,175} {90,181} {92,188} {93,191} {94,208}
{97,199} {99,207} {101,223} {103,234} {104,238}
{106,241} {107,253} {109,237} {111,240} {112,255}
{113,230} {115,260} {120,252} {121,245} {45,201}
{142,159} {149,172} {150,371} {152,366} {153,192}
{158,374} {163,173} {165,195} {166,360} {167,365}
{168,204} {176,196} {178,193} {353,375} {357,376}
{362,367} {364,372}

Combining Lemma 1.3 and Lemma 2.3 we have the the following results.

Theorem 2.4. There exists an *LM P (1 Cy) for v € {7,13,19,25,31, 43, 67, 139, 163,
211,283,307,331,379}.

3. A Construction of *LMP(1VC,) via 3-designs

A 3-wise balanced design is a pair (X, B), where X is a finite set and B is a set of
subsets of X, called blocks with the property that every 3-subset of X is contained in a
unique block. If | X| = v and K is the set of block sizes, we denote it by S(3, K, v). Let
(X U{oo},B) bean S(3, Ko U K1,v + 1) where | X| = v. (X U {00}, B) is denoted by
S(3, Ko, K1,v+ 1) if |B] € Ky forany oo € B € B; and |B| € K; for any oo € B € B.

An S(3,{k},v) is denoted by S(3,%k,v). An S(3,4,v) is usually called a Steiner
quadruple system of order v. The following results can be found in [11].

Lemma 3.1. (1) There exists an S(3,q+ 1, q™ + 1) for any prime power q and any integer
n > 2.

(2) There exists an S(3,4,v) if and only if v = 2,4 (mod 6).

Theorem 3.2. If there exists an S(3, Ko, K1,v + 1) and there exists an * LM P(1*=1Cy)
foranyk € Ky, andk = 2,4 (mod 6) forany k € Ky, then there exists an* LM P(1VCy).

Construction: Let (X [J{oo1},B) be an S(3, Ko, K1,v + 1). We will construct an
*LMP(1Cy) on X U {001, 002, 003, 004 } by the following two steps.
Step 1. For any B € B, 001 € B (i.e., | B| € K1), by the hypothesis, there exists an

*LMP(11B1710y) = {(B U {009, 003,004}, Ap(x)) : € B\ {o01}}

such that each Ap(x) have edge-leave (001 00y 003 004) and {007, 003, x}, {002, 04,
z} € Ag(z) forxz € B\ {oo1}.
Step 2. For any B € B, 001 ¢ B (i.e., | B| € Kj), there exists an S(3,4, |B|) (B, Ap)
by (2) of Lemma 3.1. Let Ag(z) = {C\ {2} : z € C € Ag}.
For any x € X, define
B.= |J As().

zeBeB
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Then it is readily checked that the collection {(X (J{o01, 002, 003,004}, B;) : = € X}is
an *LM P(1VCy). a

Corollary 3.3. There exists an * LM P(1°Cy) for v = u’ where j > 1 and u € {7,13,19,
25, 31, 43, 67,139, 163, 211, 283, 307, 331, 379}

Proof It follows immediately from Lemma 3.1 and Theorem 3.2. o

4. A direct product construction

In this section, we will give a direct product construction, which is actually a general-
ization of Theorem 3.1 of [6]. Firstly, we introduce some definitions.

Assume thatv = 1 (mod 6). Let I, = {1,2,--- ,v}and X = I, |J{o01, 002, 003,004}
Let {(X,B;) : i € I,} be an LM P(1VCy). The triple-leave of the LM P(1"C}) is the
set of (Ig) \ (U B;) and denoted by Ly (v). A simple counting shows that |Lp(v)| =

iel,
v(v—1)/3.

Let *LMP(va4) = {(Iv U{ool, 002, 003, 004}, Bl) NS Iv} with {001, OO3,i},
{002, 004,14} € B; and each B; have the edge-leave Cy = (001 002 003 004) and triple-
leave Lp(v). Let E; = {{a,b} : a,b € I,,,{oc01,a,b} € B;,l = 1,2,3,4}. A partitioned
*LMP(1vCy) is an *LM P(1VC}) if the following conditions hold:

(1) E; can be partitioned into E}, EZ, such that (I, \ {i}, E}) and (I,,\ {i}, E?) are all
2-regular graphs for i € I,,.

(2) Given a direction for each cycle of E}, we obtain a directed graph E}, such that

U E} = DK, (DK, is the complete digraph of order v) (i.e., for any ordered pair (a, b)
icl,
a # b € I, there is a unique i such that (a,b) € E}).

(3) There exists a partition { P, Py, - - - , P, } of the triple-leave L1 (v), such that | P;| =
|Pj|,i# j € I, and P; cover E? (i.e., for any {a,b} € EZ, there exists one block B € P;
such that {a,b} C B. Note: |P;| = “z% and |E?| = v — 1).

Lemma 4.1. [6] There exists a partitioned * LM P(17C}).
Theorem 4.2. If there exist both a partitioned * LM P(1YCy) and an LM P(1*Cy) (or a
*LMP(1%CYy)), then there exists an LM P(1**Cy) (or a * LM P(1**Cy)).

Construction: Let {(I, | J{oo1, 002,003,004}, B;) : i € I,} be a partitioned *LM P
(1vCy). The symbols E}, E?, P, i € I,, are the same as in the definition. And let
LMP(1"Cy) = {(Zy {001, 009,003,004}, Aj) @ § € Z,}. We will construct uv
MP(1""Cy)s (X,Cij), i € Iy, j € Z, on X = (Z, x I,) |J{o01, 002,003, 004} Where
Ci; consists of the following triples:

Part 1. {(z,1), (y,1), (2,%)}, where {z,y, 2} € A; and (00;,i) = 001, 1 =1,2,3,4.

Part 2. {(l‘, kl), (y, Ifg), (Z, k‘3)}, where {k‘l, ]62, k?3} € B;, k1 < ko < kg3, k‘l, kg, ks €
Iy, x+y+ 2z=j (modu).

Part 3. {(z, k1), (y, k1), (l;y +7,ka)}, where (ky, ko) € B}, 2 £y € Zy,x < y.

Part 4. {(z, k1), (x — y, ko), (x +y + j, k3) }, where {k1, ko, k3} € Py, k1 < ko < ks,
x € Zyy€Zy\{j}

Part 5. {(z, k1), (x +j, k2), 00}, where (ky, ko) € E} and {ky, ko, 00} € Bi, x € Z,,.

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. LXXXVIII, No. 2, C1A1002003 (2010) [10 pages]



C1A1002003-8 J. LEI ET AL.

Part 6. {(z1, k1), (22, k2), 00, }, where {k1, ka} € E2, ki < ko and {k1, ko, 00} € B;.
Let {k1, ko, k3} € P;, then

r1=x,x0=x—Jifky < ks <ks,x € Z,;

r1=x, 0 =x+2jifky < ks <ko,x € Zy;

Ty =x—j,xo=x+2jifks < ky < ko, x € Z,.
Proof (1) Each (X,C;;),i € I,,,j € Z,,,is an MP(1*"Cy).

In fact, there are exactly

wi4-Tu 2(v—1)(v—4 u—1)(v—1 w(u—1)(v—1
Tkt | @ @oDot) | ue o) | wee D) gy 1)

_ u?v? +T7uv+4
- 6

blocks in each C;; (1 € I,, j € Z,). Thus, we only need to show that any 2-subset
P e (X x X)\ C4 is contained in a block of C;;. All the possibilities of P are exhausted
as follows:

(a). P = {001,003} or {o02, 004}, then P is contained in one block of Part 1 of C;;.

(b). P =A{(x,h),001}, x € Z,,h € I,. If h = i, since pair {x, 00; } is contained in
exactly one block B of A;, P is contained in one block of Part 1 of C;;. If h # 4, there is
an s € I, such that {h, s,00;} € B;. When {h,s} € E}, P is contained in one block of
Part 5 of C;;. When {h, s} € EZ, P is contained in one block of Part 6 of C;;.

©). P={(z,h),(y,h)}, x #y € Zy,h € I,. If h = i, then P is contained in one
block of Part 1 of C;;. If h # 4, then P is contained in one block of Part 3 of C;;.

d). P={(z,h),(y,8)},z,y € Zy,h # s € I,. Thereisat € I,,U{c01, 002, 003,00}
such that {h,s,t} € B;. If t € I, then P is contained in one block of Part 2 of C;;. If
t = ooy, then when {h,s} € E}, P is contained in one block of Part 3 or Part 5; when
{h, s} € E2, P is contained in one block of Part 4 or Part 6 of C;;.

Thus, each (X,C;;), ¢ € I, j € Z,,,1s an M P(1*"Cy).

(2). For any (4, j) # (s,t), 4,5 € I, j,t € Z,, C;; and C are disjoint.

(@.1#s.Since B;NBs; = ¢, EPNE" =¢,(n=1,2), NP, = ¢, and (P; U Ps)N
(Bl U BS) = ¢, we have Cij NCs = ¢.

(b). If i = s, then j # t. Note that A; (A, = ¢, P\ B; = ¢,

{{;my,z} Crtytz=j,2,9,2 € Zu}ﬁ{{xa%z} rrtytz=1,x,9,2 € Zu} = o,
and
{(@, 2~y a+y+j) 1 2 € Zy,y € Z\{j} 0 (z, 27—y, 2+y+t) 2 € Zy, y € Z,\{t}} = ¢.

It is not difficult to check that C;; () Cs: = ¢.

Remark: If LM P(1*Cy) = {(Z,, |J{o01, 002, 003,004}, A;) : j € Z,}isan *LMP
(1*Cy), i.e. the blocks {001, 003,75}, {002,004,5} € Aj. Then by the construction of
Theorem 4.2, we have the blocks {001, 003, (4, 7) }, {002, 004, (i,4)} € Ci;. Thus we get
an *LM P(1"0Cy). m

5. Conclusion

Combining Corollary 2.4, Corollary 3.3, Lemma 4.1 and Theorem 4.2, we obtain the
following results:
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Theorem 5.1. There exists an LM P(1°Cy) for v = T'u? where i > 0,5 > 0 and u €
{13,119, 25, 31, 43,67, 139, 163,211, 283, 307, 331, 379}.
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